Manipulating and probing the growth of plasmonic nanoparticle arrays using light.

نویسندگان

  • Oral Ualibek
  • Ruggero Verre
  • Brendan Bulfin
  • Victor Usov
  • Karsten Fleischer
  • John F McGilp
  • Igor V Shvets
چکیده

Highly ordered self-assembled silver nanoparticle (NP) arrays have been produced by glancing angle deposition on faceted c-plane Al2O3 templates. The NP shape can be tuned by changing the substrate temperature during deposition. Reflectance anisotropy spectroscopy has been used to monitor the plasmonic evolution of the sample during the growth. The structures showed a strong dichroic response related to NP anisotropy and dipolar coupling. Furthermore, multipolar resonances due to sharp edge effects between NP and substrate were observed. Analytical and numerical methods have been used to explain the results and extract semi-quantitative information on the morphology of the NPs. The results provide insights on the growth mechanisms by the glancing angle deposition. Finally, it has been shown that the NP morphology can be manipulated by a simple illumination of the surface with an intense light source, inducing changes in the optical response. This opens up new possibilities for engineering plasmonic structure over large active areas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

Formation of plasmonic nano- particle arrays – rules and recipes for an ordered growth

We review a self-assembled growth method for plasmonic nanoparticle arrays, based on glancing angle deposition. We produced ordered Ag, Au, and Cu nanoparticle arrays over large areas on different stepped oxide templates. Precise control over the final geometry can be difficult and we provide recipes to obtain macroscopically ordered structures. We discuss the influence of the adsorbate diffusi...

متن کامل

Controlled in situ growth of tunable plasmonic self-assembled nanoparticle arrays.

Self-assembled silver nanoparticle (NP) arrays were produced by deposition at glancing angles on transparent stepped Al2O3 templates. The evolution of the plasmonic resonances has been monitored using reflection anisotropy spectroscopy (RAS) during growth. It is demonstrated that the morphology of the array can be tailored by changing the template structure, resulting in a large tunability of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2013